An error estimate for Stenger’s quadrature formula

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Error Estimate for Stenger's Quadrature Formula

The basis of this paper is the quadrature formula where q = exp(2A), h being a chosen step length. This formula has been derived from the Trapezoidal Rule formula by F. Stenger. An explicit form of the error is given for the case where the integrand has a factor of the form (1 — x)a(\ + x)P, a,ß> -1. Application is made to the evaluation of Cauchy principal value integrals with endpoint singula...

متن کامل

Error inequalities for an optimal 3-point quadrature formula of closed type

In recent years a number of authors have considered an error analysis for quadrature rules of Newton-Cotes type. In particular, the mid-point, trapezoid and Simpson rules have been investigated more recently ([2], [4], [5], [6], [11]) with the view of obtaining bounds on the quadrature rule in terms of a variety of norms involving, at most, the first derivative. In the mentioned papers explicit...

متن کامل

Quadrature formula for computed tomography

We give a bivariate analog of the Micchelli-Rivlin quadrature for computing the integral of a function over the unit disk using its Radon projections. AMS subject classification: 65D32, 65D30, 41A55

متن کامل

Quadrature formula for sampled functions

Abstract—This paper deals with efficient quadrature formulas involving functions that are observed only at fixed sampling points. The approach that we develop is derived from efficient continuous quadrature formulas, such as Gauss-Legendre or Clenshaw-Curtis quadrature. We select nodes at sampling positions that are as close as possible to those of the associated classical quadrature and we upd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1982

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1982-0645669-9